
Garbage Collection

When we know that a block of allocated memory
is no longer needed, it is easy to free it up by
marking it as unused in the Heap Table. The trick
is discovering when it is no longer needed.

There are two standard ways of identifying
unneeded memory:

• Relying on the user to indicate the lack of
need, using a construct such as C's free()
function.

• Having a system running in the background
that automatically identifies memory that is
no longer addressable and hence can be
deallocated. This is called a garbage
collection system. Object-oriented
languages and functional languages both
tend to use garbage collection.

There are several different approaches to garbage
collection. We will discuss 3:

• Reference counts
• Mark and Sweep
• Copy Collectors

Reference Counts

With each chunk of allocated memory keep a count
of how many references the program has to
locations within that chunk. This count is usually
maintained in the Heap Table.

For example, consider an object-oriented
language. Objects are allocated on the heap, so if
you construct a new object of class Foobar with
 Foobar p = new Foobar()

the value of p will be an address on the heap. The
result of this line is that the chunk of memory
containing this address gets a reference count of
1. If we then say
 Foobar q = p
we increment the reference count to 2.

If this happens within function fun() which returns
p and we call the function with
 Foobar x = fun()
then the reference count is increased by 1 for this
assignment and decremented by 2 since p and q are
both deallocated when we return from fun().

When a reference count for a chunk of memory
reaches 0, the chunk can be deallocated. This means
that anything pointed to by the chunk has its
reference count decremented.

For example, in the following picture x and y are
variables holding pointers to their locations, which
point to other locations. The reference counts are
x:1, y:2, block1: 1, and block2: 2

x

y

Anonymous
block 1

Anonymous
block 2

x

Anonymous
block 1

Anonymous
block 2

If x is dealloated the reference counts become x:0,
y:1, block1: 0 and block2: 1. Both x and block 1
will be garbage collected.

y

Note that reference counts have a problem with
cyclic list structures:

head

The reference count for the first block is 2, so even
if we deallocate the head variable we can't
garbage collect any of the blocks.

The standard release of Python is said to run a
cycle detection algorithm and so it can garbage-
collect cyclic structures not referenced externally.

Mark & Sweep

Reference counting is an incremental garbage
collection method -- you can collect unneeded
memory at any point after it becomes unneeded.

Mark & Sweep is a batch approach. When
something needs to be done the execution of the
program is halted, memory is reclaimed, and
execution resumes.

The idea of Mark & Sweep is that we make a pass
through the Heap Table, marking any chunk into
which there is a live reference. We then make a
second pass, deallocating any unmarked memory.

This is expensive, so it is not usually done until the
heap is almost exhausted.

The difficulty with Mark & Sweep is the marking
algorithm. This usually starts with a live variable
analysis -- which variables are currently live. Any
memory pointed to by live variables is marked, and
recursively anything that it points to is also marked.

Advantages of Mark & Sweep:
• Allocation of the heap is fast, since there are

no reference counts to worry about.
• Actual deallocation is fast since there are no

pointers to follow.
• Assignment is fast, since there are no

reference counts to analyze.
• Cyclic data structures are not a problem since

any structure that cannot be reached by some
live variable will be garbage collected.

• Most programs don't need garbage collection,
and will run faster under Mark & Sweep.

Disadvantages of Mark & Sweep:

• The program has to halt while garbage
collection takes place.

Copy Collectors

These divide the heap into two halves -- the from-
space and the to-space. Initially all allocations are
from the from-space. When this is nearly full a
Mark&Sweep pass is executed and the live parts of
the heap are copied to the to-space. The roles of
the from-space and to-space are then reversed.'

In other words, Copy Collectors combine
Mark&Sweep with a defragmentation algorithm.

The big cost of copy collecting over other methods
is that it reduces the effective heap size by a factor
of 2. But then, memory is cheap, right?

Note that the garbage is never "collected"; it just
isn't copied.

An object that is created and then is deallocated
before the marking pass is handled for free.

Copy collectors handle ephemeral data well. They
are much less efficient for long-lived data.

